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Steady-state density in annihilation of immobile reactants with input of particles
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The annihilation reaction A + A — 0 and the coagulation reaction A + A — A with reaction
probability p and the input probability of particles ¢ in a one-dimensional lattice is studied. The
behavior of the steady-state density of particles as a function of the parameter a = ¢/p is obtained.
The limit a — 0 is solved exactly. The solution is derived from a system of linear differential

equations for the probabilities of finding n correlative particles I'y.

confirmed by numerical simulations.
PACS number(s): 05.40.+j, 82.20.Mj

I. INTRODUCTION

In the past decade much effort has been dedicated to
the study of reaction-diffusion systems [1]. These systems
show a breakdown of the mean-field approximation and
of the standard chemical rate equations in low dimensions
(i.e., fractals, multifractals, or one-dimensional systems).

The models of immobile reactants [2—4] have received
less attention because generally, unless longer-range re-
actions are allowed [3], the time dependence of the par-
ticle density involves exponential relaxation rather than
anomalous power-law behaviors. Nevertheless, besides
the dynamics, there is another point of interest which is
the steady-state value of the density when there is input
of particles.

In the present work the steady-state of annihilation
(A+ A — 0) and coagulation (A4 + A — A) reactions
with immobile reactants in a one-dimensional lattice are
studied. It is considered that when two particles are at
first neighbors they react with probability p. The model
represents a system surrounded by a gas of particles at
constant pressure. So there is a constant input rate of
particles adsorbed into the system.

Very recently [4] analytical results have been obtained
for annihilation and coagulation reactions between im-
mobile reactants with probability p of reaction. The mo-
tivation for the present paper is to introduce the input
of particles into the model and to study the steady-state
regime.

The input changes the behavior of the system, even
when the input rate per lattice site tends to zero. As we
will see later, the results obtained for this case are quite
different from the case with no input.

II. THE MODEL
AND THE EQUATION SYSTEM

We will describe the calculation for the case A + A —
A. The method for case A + A — 0 is very similar.
In the model the system evolves with a discretized time
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The analytical results were

t. The one-dimensional lattice has L sites with periodic
boundary conditions. Each site of the lattice can be occu-
pied by only one particle or it can be empty. At each time
step, one of the L sites is randomly chosen with equal
probability 1/L and time is increased by 1/L. If the site
is empty, it is occupied by an A particle with probability
€. If the chosen site is already occupied by a particle,
this particle “looks” at either of the first neighbors with
equal probability 1/2; if the neighbor is occupied by an-
other particle, the first one reacts and evaporates with
probability p; if not, nothing happens, and the particle
remains at its site.

Let us denote the occupation number of a generic site
i by s;. If site 7 is occupied then s; = 1; otherwise s; = 0.
If we have at time t any given configuration {s}, the
occupation probability of site 7 at time t + §t (with 6t =
1/L) is

Pi{!}(t +6t)=(1—8;-1)(1 — 8;)(1 — si41)¢/Looo
+(1 = 8i—1)(1 — 8i)si41€6/Looce
+(1 - 5:’—1)8,‘(1 - s,-+1) ceo
+(1 —s;-1)8i8:41(1 —p/2L)c e e
+si—1(1 — 8;)(1 — si+1)e/Leoco
+8i_1(1 — 8;)8;y1€/Lece
+5;—18:(1 — 8;41)(1 —p/2L) e @0
+8i_18:8i41(1 —p/L) e ee. (1)

On the right-hand side we show the configuration of
sites (¢ — 1,4,%7 + 1), which corresponds to each term of
Pi(,)(t + ét). The symbol e (o) denotes an occupied
(empty) site at time ¢. Simplifying Eq. (1) and aver-
aging over configurations {s} we obtain

Pi(t+6t) = Pi(t) + 7 — 7 Pi(t) = g7 (si(sioa + 5i41)),

L
(2)

where P;(t) = (s;). If a random initial distribution of par-
ticles and periodic boundary conditions are used, there
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are no privileged sites in the lattice. On average the par-
ticle distribution will be uniform for all times. Therefore
P, = P; = P and (s;8;41) = (sjsj41) for all ¢,5. Let us
denote the two-particle correlation (s;s;+1) by I';. Then

€

P(t+3t) - P(t) = 7 - %P(t) - %Fz(t). (3)

The occupation probability per lattice site P(t), now
independent of i, is equivalent to the global density of
particles, which we will denote by I';(t). Knowing that
8t = 1/L, in the continuous limit, when L — oo, we have

t

O _ 1 ra(0)) - pa). (4)
The first term represents the input of particles: the input
probability € times the probability of finding an empty
site. The second term represents the decrease of I'y(¢)

due to the reaction.
In the same manner we can obtain less obvious linear
differential equations for the n-particle correlations I';, =

<31 Sz sn)a
dr(2)

T Z<s‘

—p[(" = 1Tn(t) + Tnia(2)]

n

“85-1(1 = 85)8541 - n)

- Fo e o
=pl(n = 1T'a(t) + Tnia ()] (5)

for n > 2. The first term is the input probability € times
the probability of finding an incomplete chain of n sites
with an empty site. The second term is the reaction
term. The first part [—p(n — 1)T',,(¢)] is due to the prob-
ability of a reaction of one of the n — 1 bonds of an n
chain. If there is a particle in a site adjacent to the n
chain, there is an additional bond to consider in the re-
action. This case is taken into account by the second part
[=pTr+1(t)]. Chains larger than n 4+ 1 sites are included
in this equation and no additional terms with I',,;; (with
j > 1) are required. If we consider no input of particles,
i.e., ¢ = 0, then Eq. (5) is equal to Eq. (3) in Ref. [4] for
a one-dimensional lattice.

For n = 2 we have dl'(t)/dt = 2€[['1(t) — T'2(t)] —
p[C2(t) + 3(t)]. For n > 3 we have to make an ap-
proximation for (sj:--S$j_18j41-:-5n). We can pro-
pose as a first step a decorrelation of the product,
ie., (S1---8j_18j41 " Sn) = (S1---8;_1)(Sj41- " 8n) =
[j_1ln_j . This approximation becomes valid when
the chain of j — 1 sites is far from the chain of n — j
sites. We consider that it could also be a good ap-
proximation to take both chains together instead of
one far from the other, i.e., (s1---5j_18j41-" 8n) =
(s1+-+8j-18j+Sn—1) = I'n_1. This approach has the
advantage of producing linear differential equations, so
the steady state can be easily obtained. Finally we have

Tt~ efla-a(t)  Ta(e)]

—pl(n — D)Tp(t) + Tnya(t)] forn>3. (6)
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In the next section we show numerical simulations that
support this approximation.

III. THE STEADY STATE

To evaluate the steady-state density I'y we have to
solve the equation system

aFl + Fz =a,
(7)
nalp_y —(ra+n—-—1), —Tpy1 =0 forn > 2,

where parameter a is equal to ¢/p. From Egs. (7) it can
be probed by induction that

-1
nlan Tl yaoy

Yn Yn

I, = I'nyr forn>1, (8)

where y,, are polynomials in a (except for n = 0), defined
by

Yn+1 = (TL + l)ayn—l + [(n’ + 1)0‘ + n]y'H (9)

with yo = 1/a and y; = 1. Iterating Eq. (8) we have

S e (S

i=n ji=n

+I‘°°H( ¥ic 1). (10)

Due to the annihilation, the correlation I';, vanishes when
n — oo. Simplifying Eq. (10) one finally gets the steady-
state correlations for the coagulation reaction A+ A — A

oo

i i +1)!a*
Ty = yn_ RS Gt L 11
Yn—1 Z (=1) YiYit1 (1)

For n = 1 the steady-state density is

b !
r, = 1 Z( 1)1(ii1)_a (12)
a i=0 YilYi+1

In Fig. 1 we plot I, as a function of a for different
values of n. Although Egs. (4) and (5) are valid only
for uniform initial particle distributions, the steady state
derived from these equations is valid for all kinds of ini-
tial conditions since the input and the annihilation make
the particle distribution homogeneous. Therefore, a uni-
versal behavior of the I'),’s, in the sense that they are
independent of initial conditions, is obtained. Numeri-
cal data are also plotted in Fig. 1 to confirm Eq. (11).
The agreement between numerical and analytical data

supports the approximation made in Eq. (6) for n > 3.
The case with no input of particles, i.e., a = 0, was
solved in Refs. [2] and [4]. If random initial distributions
are used, the density behaves as I'; (t) = po exp[—po(1 —
e~ P)], where po is the initial density. For long times
I'y = poe*°. In our case, when a — 0, I'; — 1/3. For
a — 0 the result is completely different from the one for
a = 0. This means that a very small input of particles is
sufficient for the system to forget initial conditions and to
reach the steady-state density value which only depends



50 STEADY-STATE DENSITY IN ANNIHILATION OF IMMOBILE. .. 2599

0.6

Iy

0.4

0.2 4

0.0

0 4 8 12 16 20

a

FIG. 1. Plot of I',, versus a for the reaction A + A — A.
From top to bottom n = 1 (the density), 2, and 4. The lines
are evaluated from Eq. (11). The points were obtained via
numerical simulations. In the simulations a time tmax = 200
was enough to reach the steady state; random initial distri-
butions were used with initial density po = 0.5; a lattice with
periodic boundary conditions and size L = 30000 was used
and the results were obtained averaging over ten samples.

on the parameter a. The value I'; = 1/3 is an exact result
independent of the approximation we made for n > 3
because when a — 0, T',, = 0 for n > 2, and the result
can be derived from the two equations of (7) (for n =1
and n = 2), which are exact.

Repeating the same process for the annihilation reac-
tion A + A — 0, the result for the steady-state density
is

oo . . ' 1
ry= 13N (13)

o
e YiYit1

where the polynomials y], are defined by
Yn1 =2e(n+ 1)yp_; +[(n+ 1)a + ny,, (14)

with y§ = 2/a and y; = 1. Now, in the limit when
a — 0, T, = 1/5. As before, the value 1/5 is exact. As
expected, this value is lower than the one corresponding
to coagulation reaction.

IV. CONCLUSIONS

We studied the steady-state regime for the coagulation
(A+A — A) and annihilation (A+ A — 0) reactions with
input of particles (0 — A). For both cases approximate
results for the n-particle correlations I',, were obtained.
In particular, when n = 1 we have the density of par-
ticles. The results were derived from Egs. (7), a non-
homogeneous equation system. A universal behavior of
the I',’s, in the sense that they are independent of ini-
tial conditions, was obtained. In the limit of small input,
a — 0, we obtained the exact value of the steady-state
density for both types of reactions.

With the help of a symbolic manipulator computer pro-
gram such as MATHEMATICA, the method described in
Sec. II, for deriving linear differential equations, may be
useful for other cases. The method was also used in Ref.

[5].
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